Dr. Kainz received his PhD Degree in
Technical Science from the Technical University of Vienna, Austria in 2000.
After working for the Austrian Research Center Seibersdorf, he joined the
Foundation for Research on Information Technologies in Society (IT’IS) in
Zurich, Switzerland, as Associate Director. At IT’IS, Dr. Kainz developed
in-vivo and in-vitro exposure setups for bio-experiments. From Feb. 2002 to
Feb. 2022, he was Senior Research Biomedical Engineer at the U.S. Food and Drug
Administration (FDA) in the Center for Devices and Radiological Health (CDRH).
In Feb. 2022 Dr. Kainz founded
High Performance
Computing (HPC) for MRI Safety and is currently HPC’s CEO and President.
Kainz于2000年獲得奧地利維也納技術大學技術科學博士學位。在奧地利研究中心Seibersdorf工作后,他加入位于瑞士蘇黎世的社會信息技術研究基金會(IT IS),擔任副主任。在IT’is, Kainz博士開發了生物實驗的體內和體外暴露裝置。2002年2月至2022年2月,他在美國食品和藥物管理局(FDA)的設備和放射健康中心(CDRH)擔任高級研究生物醫學工程師。他于2022年2月創立了用于MRI安全的高性能計算(HPC),目前是HPC的首席執行官和總裁。
At FDA Dr. Kainz was the lead
scientist for MRI safety related research in the Office of Science and
Engineering Laboratories (CDHR/OSEL). He reviewed more than 1000 medical device
submissions, has published over 200 peer-reviewed articles and book chapters,
and has co-authored many FDA guidances. He has extensive regulatory experience related
to 510k, PMA, and IDE submissions and was CDRH’s Senior Subject Matter Expert
(SME) on Magnetic Resonance Imaging (MRI) safety. He is currently Senior Member
of the Administrative Committee of the IEEE International Committee on Electromagnetic
Safety and Member of many International Standards Committees.
在FDA, Kainz博士是科學與工程實驗室辦公室(CDHR/OSEL)核磁共振安全相關研究的首席科學家。審查了1000多份醫療設備提交,發表了200多篇同行評議的文章和書籍章節,并合著了許多FDA指南。其擁有與510k、PMA和IDE提交相關的豐富監管經驗,是CDRH在磁共振成像(MRI)安全方面的高級主題專家(SME)。Kainz目前是IEEE電磁安全國際委員會管理委員會的高級成員,以及許多國際標準委員會的成員。
His experience is focused on the
safety and effectiveness of medical devices and the safety of humans in
electromagnetic fields. This includes novel computational life science methods
for safety and effectiveness evaluations using functionalized anatomical models
of the human anatomy; MRI safety; performance and safety of wireless technology
used in medical devices; electromagnetic compatibility (EMC) of medical
devices; dosimetric exposure assessments from DC to light; and novel methods to
computationally assess the safety and effectiveness of new neuroprosthetics,
e.g., electroceuticals, and therapeutic stimulation methods.
他的經驗專注于醫療設備的安全性和有效性,以及人類在電磁場中的安全性。這包括新的計算生命科學方法,因為他的經驗專注于醫療設備的安全性和有效性,以及人類在電磁場中的安全性。這包括使用功能化人體解剖模型進行安全性和有效性評估的新型計算生命科學方法;核磁共振安全;無線技術在醫療設備中的性能和安全性,醫療器械的電磁兼容性;從直流電到光的劑量暴露評估;以及通過計算評估新型神經義肢的安全性和有效性的新方法,例如,電藥物和治療性刺激方法。
In 2004 Dr. Kainz initiated the
Virtual Family Project in co-operation with IT’IS and Prof. Ji Chen from the
University of Houston. In 2010, he received the prestigious FDA Award of Merit
for exceptional leadership in performance in addressing issues of compatibility
of medical devices during MRI by applying transparently scientific research to
device regulation. In 2016 Dr. Kainz initiated o2S2PARC
(Open Online Simulations for Stimulating Peripheral Activity to Relieve
Conditions, https://osparc.io/) in co-operation with IT’IS. o2S2PARC
is one of the three integrative cores of NIH’s SPARC (Stimulating Peripheral
Activity to Relieve Conditions) program’s Data Resource Center. The aim of o2S2PARC
is to establish a comprehensive, freely accessible, intuitive, and interactive
online platform for simulating peripheral nerve system neuromodulation and its
impact on organ physiology in a precise and predictive manner. o2S2PARC’s
goal is to make high-end biomedical simulation tools freely available in a
user-friendly environment.
2004年,Kainz博士與IT IS和休斯敦大學陳吉教授合作發起了虛擬家庭項目。2010年,他通過將透明的科學研究應用于設備監管,在解決MRI期間醫療設備兼容性問題方面的卓越領導表現,獲得了久負盛名的FDA Merit獎。2016年,Kainz博士與IT IS合作發起了o2S2PARC (開放在線模擬刺激周邊活動以緩解條件)。o2S2PARC是美國國立衛生研究院(NIH) SPARC(刺激周邊活動緩解條件)項目數據資源中心的三個整合核心之一。o2S2PARC的目標是建立一個全面、自由、直觀、交互式的在線平臺,以精確和預測的方式模擬周圍神經系統的神經調節及其對器官生理的影響。o2S2PARCC的目標是讓高端生物醫學模擬工具在用戶友好的環境中免費使用。
The latest ASTM Standard F2182-e02 “Standard
Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive
Implants During Magnetic Resonance Imaging” states that “the measurements of
RF-induced heating of an implant in the phantom may not be fully predictive of
the heating of the device in a patient. Additional computational assessment may
be necessary to predict the heating of the implant in patients for clinical
settings.” Additionally, for many implants, the US FDA has asked to provide
the estimated worst-case in-vivo heating. To assess the worst-case in-vivo
heating computational modeling using anatomically correct models of the human
anatomy is required. For multi-configuration devices it is difficult to assess
which configuration presents the worst-case for RF-induced heating. Also, for
complex shaped implants it is often not possible to predict the location of the
worst-case heating on the implant’s surface. Computational modeling is ideally
suited to assess which configuration of a multi-configuration device presents
the worst-case for RF-induced heating and/or predict the location of the
worst-case heating on the device surface. These services are provided by our
partner High Performance Computing (HPC) for MRI Safety, LLC. We now offer computational
modeling to assess implant and medical device safety in the MR environment.
最新的ASTM標準F2182-e02“磁共振成像中被動植入物上或附近射頻感應加熱測量的標準試驗方法”指出“在體模中植入物的射頻感應加熱測量可能不能完全預測患者中設備的加熱?!鳖~外的計算評估可能是必要的,以預測植入物在臨床環境中的加熱?!贝送?,對于許多植入物,美國FDA要求提供估計的最壞的體內加熱情況。為了評估最壞的體內加熱情況,需要使用解剖學上正確的人體解剖模型進行計算建模。對于多配置的器件,很難評估哪種配置對射頻誘導加熱最不利。此外,對于形狀復雜的種植體,通常不可能預測種植體表面最糟糕的加熱位置。計算模型非常適合評估多配置設備的哪一種配置會出現射頻誘導加熱的最壞情況,并/或預測設備表面最壞情況加熱的位置。這些服務由我們的合作伙伴高性能計算(HPC)磁共振安全有限責任公司提供。我們現在提供計算模型來評估植入物和醫療設備在磁共振環境中的安全性。